От вспышки до алгоритма: как работает система мониторинга электрогидроразрядов?

16.05.2025, 19:05, Разное
  Подписаться на Telegram-канал
  Подписаться в Google News
  Поддержать в Patreon

Зачем это нужно?

Электрогидравлический эффект — физическое явление, при котором электрический разряд вызывает образование ударной волны, которая, в свою очередь, выполняет полезную работу, например дробление стекла, угля, торфа, растительных отходов, нерудных и других материалов, обогащение руд, извлечение остаточных полезных ископаемых из отвалов, обеззараживание воды, механоактивацию строительных материалов и так далее.

Этот эффект используется в разработанной белорусскими инженерами UST Inc. электрогидроударной установке UniThorr,  которая применяется компанией для тонкого измельчения природных ископаемых (бурый уголь, торф, горючие сланцы), извлечения редких химических элементов, получения водоугольного топлива, очистки и обеззараживания жидкостей и так далее.

При каждом электрическом разряде необходимо получать информацию о множестве параметров: от величины пикового тока до формы разрядного канала. Чтобы управлять электрическим разрядом, нужно не просто научиться измерять электрические параметры импульса, но и в реальном времени отслеживать поведение разряда внутри рабочей среды.

Почему это так сложно?

Во-первых, процесс образования и распространения разряда в жидкости очень быстротечный – разряд длится доли микросекунды, а амплитуда тока может достигать десятков килоампер и вносит помехи в электромагнитные каналы. Во-вторых, во время электрогидравлического разряда возникают ударные волны со сверхзвуковыми скоростями и давлением до 65 МПа – они деформируют среду, создают кавитацию.

Изображения явлений, происходящих в жидкости при электрогидравлическом эффекте / © Unitsky String Technologies Inc

А специализированных приборов, способных работать одновременно, снимая все необходимые параметры процесса, и выдерживать электромагнитные помехи, не выходя из строя, не существует.

Для надежной фиксации процесса разработчики использовали специально созданные электромагнитные датчики, датчики давления, тока и напряжения, а также на первых этапах исследования применяли скоростную видеосъемку, позволяющую увидеть процесс возникновения стримера (канала разряда) в жидкости и сопоставить его с данными, полученными с датчиков.

Сделать это было непросто из-за скоротечности процессов, работы с высоким напряжением и при значительном уровне электромагнитных помех.

Что удалось выяснить?

На первый взгляд, разряд в жидкости – это просто «вспышка и хлопок». Но если заглянуть внутрь этой вспышки с помощью скоростной камеры и различных датчиков, открывается целый микромир. Ученые UST Inc. обнаружили, что на процесс возникновения и дальнейшего развития электрического разряда в жидкости напрямую оказывают воздействие множество факторов — от формы электродов до степени минерализации воды.

Результатом подготовительной работы по созданию ПАК стала визуальная фиксация разрядов и их классификация.

● Пузырьковый стример. Разряд начинается в микроскопических пузырьках газа, которые уже есть в жидкости. Под действием высокого напряжения внутри пузырьков возникает ионизация, после чего они раздуваются и становятся стартовой точкой для канала. Этот тип характерен для недегазированной воды и относительно долгих импульсов.

● Микровзрывной. Вода у поверхности электрода вскипает от локального нагрева, образуется пар, и в этом пару происходит разряд. Возникает мощная ударная волна – словно мини-взрыв. Такой механизм часто работает в установках с острыми электродами и очень высоким напряжением.

● Ионизационный. Здесь нет пузырьков или пара – разряд происходит прямо в жидкости благодаря гигантскому перенапряжению и сверхкороткому фронту импульса. Канал распространяется со скоростью до 200 км/с (!) и напоминает фрактальное дерево.

● Электротепловой. Разряд развивается медленно, от постепенного нагрева жидкости. Разрядный канал получается более толстым и стабильным, но требует высоких энергозатрат.

Вид разряда определяет не только значение электрических параметров, но и эффективность работы всей установки. Например, ионизационный стример дает резкий, мощный импульс с короткой продолжительностью, а микровзрывной сопровождается сильной ударной волной и резким скачком давления. Пузырьковый стример наиболее непредсказуем, но может обеспечивать мягкое разрушение структуры обрабатываемого материала.

Благодаря высокой точности регистрации данных,  синхронизации всех датчиков и скоростной видеосъемке, инженеры смогли установить зависимость между типом разряда, характеристиками импульса и конечным результатом воздействия. Это открыло путь к следующему шагу – созданию алгоритмов мониторинга и анализа эффективности работы импульса с возможностью дальнейшей корректировки работы установки в реальном времени.

Фактически речь идет о возможности управления процессом, то есть оператор может создавать условия для требуемого эффекта и формировать цифровой отпечаток разряда – сигнал, по которому система определяет, что именно будет происходить в рабочей камере установки: мощный удар, некачественный разряд или идеальный по форме и энергии импульс. ПАК не только фиксирует это, но и предлагает оператору возможные варианты корректировки режима дальнейшей работы установки в реальном времени.

Таким образом, из хаоса и случайности электрогидравлический эффект превращается в управляемый инструмент – точный, надежный и адаптивный. То, что раньше было «ударом наугад», стало высокотехнологичным процессом с предсказуемым результатом.

Почему это важно?

Теперь оператор установки UniThorr с помощью алгоритмов, предлагаемых комплексом, может настраивать систему на режимы с максимальной эффективностью и безопасностью. Это повышает производительность, снижает износ оборудования, уменьшает энергозатраты и делает сам процесс более предсказуемым и управляемым.

У разработки большие перспективы. Такой подход может найти применение в энергетике, сельском хозяйстве, медицине, добыче полезных ископаемых и в области охраны окружающей среды. Все, что требует мощного, точечного, но контролируемого электрогидравлического воздействия, становится зоной применения UniThorr под контролем ПАК.




Смотреть комментарииКомментариев нет


Добавить комментарий

Имя обязательно

Нажимая на кнопку "Отправить", я соглашаюсь c политикой обработки персональных данных. Комментарий c активными интернет-ссылками (http / www) автоматически помечается как spam

ЧИТАЙТЕ ТАКЖЕ

16.06 / В Иране осудили Сталина за «руководящую и направляющую роль» в создании государства Израиль

16.06 / Саломе Зурабишвили обвинила Михаила Саакашвили в подготовке государственного переворота

15.06 / Маск объявил, что передал в Иран две тысячи терминалов Starlink

15.06 / «5-я статья авансом»: в НАТО заявили о готовности немедленно защитить Израиль от неспровоцированной агрессии Ирана

15.06 / Фонд Сороса выдвинул Нетаньяху на Нобелевскую премию мира

15.06 / Учёные не в силах объяснить, почему гранёный стакан Ельцина по ночам сам наполняется водкой

15.06 / Марсоход Perseverance сделал снимок, на котором отчётливо виден герб России

15.06 / Мнение: Немецкая армия предпочитает коренных немцев

14.06 / Германия объявила о немедленной передаче Израилю сотен ракет TAURUS

14.06 / Грета Тунберг организовала в Стокгольме акцию «Вперёд, Иран!»

Политика конфиденциальности - GDPR

Карта сайта →

По вопросам информационного сотрудничества, размещения рекламы и публикации объявлений пишите на адрес: rybinskonline@gmail.com

Поддержать проект:

PayPal - rybinskonline@gmail.com; Payeer: P1124519143; WebMoney – T323003638440, X100503068090, Z399334682366

18+ © 2002-2025 РЫБИНСКonLine: Все, что Вы хотели знать...

Яндекс.Метрика