Физики нашли аномальный эффект Холла в антиферромагнетике без намагничивания

21.04.2025, 10:35, Разное
  Подписаться на Telegram-канал
  Подписаться в Google News
  Поддержать в Patreon

Аномальный эффект Холла — явление, когда электрическое напряжение появляется поперек проводника без внешнего магнитного поля — обычно связывают с ферромагнетиками. В них электроны выстраивают спины в одном направлении, создавая намагниченность.

Однако в антиферромагнетиках спины соседних атомов направлены противоположно, компенсируя намагниченность. До сих пор считалось, что аномальный эффект Холла в таких материалах невозможен, а предыдущие попытки обнаружить эффект в них давали слабые сигналы.

Авторы нового исследования, опубликованного в журнале Nature Communications, впервые показали сильный аномальный эффект Холла в коллинеарном антиферромагнетике — материале, в котором спины атомов выстроены параллельно, но чередуют направление. Это противоречит существующим теориям и требует пересмотра механизмов, лежащих в основе явления.

В НИТУ «МИСиС» впервые показали гигантское спин-орбитальное взаимодействие в антиферромагнетиках

Ученые НИТУ «МИСиС» в составе международного исследовательского коллектива впервые продемонстрировали существование в антиферромагнетиках так называемого зеемановского спин-орбитального взаимодейст…

naked-science.ru

Физики провели серию экспериментов с материалом V₁/₃NbS₂ — слоистой структурой из сульфида ниобия с добавлением ванадия. При охлаждении ниже 50 кельвин материал переходил в антиферромагнитное состояние.

Чтобы подтвердить коллинеарную антиферромагнитную структуру материала, ученые использовали дифракцию нейтронов. Она показала упорядоченное чередование спинов без намагниченности.

Дополнительно исследователи применили метод DFT+DMFT (сочетание теории функционала плотности и динамической теории среднего поля), чтобы проанализировать электронные свойства системы с учетом квантовых корреляций. Этот подход помог объяснить связь между необычным поведением электронов и топологией материала.

Ученые измерили эффект Холла в диапазоне температур от двух до 50 кельвин и магнитных полей до восьми тесл. Несмотря на отсутствие намагниченности, при двух кельвинах они фиксировали поперечное напряжение 0,1 микроома на сантиметр — в 10 раз выше, чем предсказывали классические модели. Эффект сохранялся даже при нулевом внешнем поле.

a. Схема кристаллической структуры, атомы ванадия, ниобия и серы обозначены красными, синими и желтыми шариками соответственно. Магнитные моменты ванадия (красные стрелки) образуют коллинеарный антиферромагнитный порядок; они упорядочены ферромагнитно внутри слоя и антиферромагнитно вдоль направления z. b. Шесть доменных конфигураций коллинеарного антиферромагнитного состояния. / © Mayukh Kumar Ray et. al./Springer Nature Limited

Главная аномалия эксперимента — связь эффекта с не-Ферми-жидкостным состоянием. В этом режиме электроны теряют свойства квазичастиц, а сопротивление материала становится пропорционально температуре, что характерно для квантово-критических систем. Такое поведение наблюдали в высокотемпературных сверхпроводниках, но в антиферромагнетиках — впервые.

Ученые предположили, что эффект связан с топологией электронных зон материала. В V₁/₃NbS₂ плоские зоны около уровня Ферми создают сильные корреляции между электронами. Это формирует «виртуальное магнитное поле», которое и вызывает аномальный эффект Холла.

Другая гипотеза — роль дефектов структуры. Рентгеновская дифракция выявила 15% ванадия в «неправильных» позициях. Такие дефекты могут создавать локальные искажения спиновой решетки, которые влияют на макроскопические свойства.

Близость со сверхпроводником поменяла свойства ферромагнетика

Исследователи из МФТИ обнаружили необычное спин-волновое явление в сочетаниях сверхпроводящих и ферромагнитных материалов

naked-science.ru

Открытие ставит новые вопросы. Как именно электронные корреляции и топология влияют на эффект? Можно ли управлять им, меняя состав материала? Ученые планируют проверить гипотезы с помощью рамановской спектроскопии и экспериментов под давлением.

Коллинеарные антиферромагнетики, подобные найденному, могут стать основой для энергоэффективной спинтроники. Их преимущество — отсутствие «паразитного» магнитного поля, что позволяет создавать сверхплотные устройства. Однако для этого предстоит научиться контролировать доменную структуру и минимизировать дефекты.

Новое исследование пересмотрело связь аномального эффекта Холла с намагниченностью и открыло новое направление в изучении квантовых материалов. Сочетание топологии, корреляций и антиферромагнетизма может привести к прорывам в электронике следующего поколения.


Смотреть комментарииКомментариев нет


Добавить комментарий

Имя обязательно

Нажимая на кнопку "Отправить", я соглашаюсь c политикой обработки персональных данных. Комментарий c активными интернет-ссылками (http / www) автоматически помечается как spam

Политика конфиденциальности - GDPR

Карта сайта →

По вопросам информационного сотрудничества, размещения рекламы и публикации объявлений пишите на адрес: [email protected]

Поддержать проект:

PayPal - [email protected]; Payeer: P1124519143; WebMoney – T323003638440, X100503068090, Z399334682366

18+ © 2002-2025 РЫБИНСКonLine: Все, что Вы хотели знать...

Яндекс.Метрика